NanoOK report for MA_286_R7.3_MARC_K12_03_27_15

Pass and fail counts

Type	Pass	Fail
Template	0	43915
Complement	0	14679
2D	0	7951

Read lengths

Template alignments

Number of reads	43915	
Number of reads with alignments	20100	(45.77%)
Number of reads without alignments	23815	(54.23%)

ID	Size	Number of Reads	\% of Reads	Mean read length	Aligned bases	Mean coverage	Longest Perf Kmer
Control sequence	3560	2340	5.33	3028.16	6651007	1868.26	58
Escherichia coli	4641652	17760	40.44	6321.36	97493278	21.00	71

Complement alignments

Number of reads	14679	
Number of reads with alignments	7251	(49.40%)
Number of reads without alignments	7428	(50.60%)

ID	Size	Number of Reads	\% of Reads	Mean read length	Aligned bases	Mean coverage	Longest Perf Kmer
Control sequence	3560	882	6.01	2739.22	2086340	586.05	49
Escherichia coli	4641652	6369	43.39	5859.53	31299717	6.74	59

2D alignments

Number of reads	7951	
Number of reads with alignments	6038	(75.94\%)
Number of reads without alignments	1913	(24.06%)

ID	Sumber of	\% of Reads	Mean read length	Aligned bases	Mean coverage	Longest Perf Kmer	
Control sequence	3560	868	10.92	3055.63	2683165	753.70	160
Escherichia coli	4641652	5170	65.02	5854.97	30090593	6.48	171

Control sequence error analysis

	Template	Complement	2D
Overall base identity (excluding indels)	62.01%	55.55%	76.64%
Aligned base identity (excluding indels)	78.97%	78.22%	87.00%
Identical bases per 100 aligned bases (including indels)	66.07%	64.33%	75.76%
Inserted bases per 100 aligned bases (including indels)	5.11%	4.79%	4.43%
Deleted bases per 100 aligned bases (including indels)	11.23%	12.97%	8.48%
Substitutions per 100 aligned bases (including indels)	17.60%	17.91%	11.32%
Mean insertion size	1.58	1.54	1.50
Mean deletion size	1.68	1.79	1.64

Control sequence read identity

Control sequence perfect kmers

Control sequence coverage

Control sequence 5-mer analysis
Under-represented 5-mers

Rank	Template				Complement				2D			
	kmer	Ref \%	Read \%	Diff \%	kmer	Ref \%	Read \%	Diff \%	kmer	Ref \%	Read \%	Diff \%
1	TTTTT	0.759	0.142	-0.617	TTTTT	0.759	0.079	-0.680	TTTTT	0.759	0.042	-0.717
2	AAAAA	0.478	0.098	-0.380	AAAAA	0.478	0.058	-0.420	AAAAA	0.478	0.038	-0.439
3	TGATG	0.393	0.133	-0.261	TGATG	0.393	0.146	-0.248	TGATG	0.393	0.168	-0.225
4	GATGT	0.309	0.091	-0.218	AAAAC	0.337	0.107	-0.231	AAAAC	0.337	0.130	-0.208
5	AAAAC	0.337	0.126	-0.211	GATGT	0.309	0.091	-0.218	GATGT	0.309	0.134	-0.176
6	CTGAT	0.309	0.116	-0.193	GCAAT	0.309	0.119	-0.190	CTGAT	0.309	0.151	-0.158
7	GCAAT	0.309	0.132	-0.177	CTGAT	0.309	0.129	-0.180	CTTTT	0.253	0.099	-0.154
8	AGTAA	0.253	0.086	-0.167	AATAT	0.309	0.138	-0.171	TTATC	0.309	0.162	-0.147
9	AATAT	0.309	0.143	-0.166	TTATC	0.309	0.140	-0.169	AATAT	0.309	0.163	-0.147
10	GCTGA	0.281	0.116	-0.164	TAATA	0.281	0.114	-0.167	GCAAT	0.309	0.163	-0.146

Over-represented 5-mers

Rank	Template				Complement				2D			
	kmer	Ref \%	Read \%	Diff \%	kmer	Ref \%	Read \%	Diff \%	kmer	Ref \%	Read \%	Diff \%
1	CTTTG	0.028	0.144	0.116	ACCCC	0.000	0.131	0.131	GCATC	0.084	0.182	0.097
2	TACTT	0.000	0.112	0.112	CCCCA	0.000	0.127	0.127	TCAGC	0.028	0.121	0.093
3	TCAGC	0.028	0.139	0.111	GAGGA	0.000	0.124	0.124	CTTTG	0.028	0.121	0.093
4	GAGGA	0.000	0.110	0.110	TCAGC	0.028	0.149	0.121	ACGCA	0.084	0.177	0.092
5	ACTCT	0.000	0.109	0.109	CTTTG	0.028	0.145	0.116	GTCGA	0.000	0.091	0.091
6	ATCTA	0.000	0.108	0.108	TACTT	0.000	0.114	0.114	CATCT	0.000	0.089	0.089
7	GCTCC	0.000	0.108	0.108	GCCGA	0.000	0.111	0.111	CAGCA	0.056	0.145	0.089
8	CCCCA	0.000	0.108	0.108	ATCTA	0.000	0.110	0.110	CCCGC	0.000	0.088	0.088
9	CATCT	0.000	0.108	0.108	CATCT	0.000	0.108	0.108	ATCTA	0.000	0.087	0.087
10	TCTTA	0.000	0.102	0.102	TCTAC	0.000	0.107	0.107	TTAGA	0.000	0.087	0.087

Control sequence GC content

Escherichia coli error analysis

	Template	Complement	2D
Overall base identity (excluding indels)	55.71%	53.72%	74.17%
Aligned base identity (excluding indels)	77.77%	78.90%	86.32%
Identical bases per 100 aligned bases (including indels)	64.15%	64.06%	74.62%
Inserted bases per 100 aligned bases (including indels)	5.50%	5.08%	5.14%
Deleted bases per 100 aligned bases (including indels)	12.01%	13.74%	8.42%
Substitutions per 100 aligned bases (including indels)	18.34%	17.13%	11.82%
Mean insertion size	1.61	1.59	1.59
Mean deletion size	1.73	1.85	1.66

Escherichia coli read identity

Escherichia coli perfect kmers

Escherichia coli coverage

Escherichia coli 5-mer analysis

Under-represented 5-mers

	Template				Complement						2D		
Rank	kmer	Ref $\%$	Read $\%$	Diff $\%$	kmer	Ref $\%$	Read $\%$	Diff $\%$	kmer	Ref $\%$	Read $\%$	Diff $\%$	
1	CGCTG	0.259	0.071	-0.188	CGCCA	0.288	0.091	-0.197	TTTTT	0.251	0.031	-0.219	
2	AAAAA	0.247	0.077	-0.170	AAAAA	0.247	0.050	-0.197	AAAAA	0.247	0.030	-0.217	
3	GCTGG	0.279	0.111	-0.168	TTTTT	0.251	0.068	-0.183	CGCCA	0.288	0.168	-0.120	
4	CGCCA	0.288	0.121	-0.167	CGCTG	0.259	0.105	-0.154	GCTGG	0.279	0.166	-0.113	
5	CTGGC	0.278	0.131	-0.148	CTGGC	0.278	0.128	-0.151	GCCAG	0.280	0.168	-0.112	
6	GCCAG	0.280	0.135	-0.145	TGGCG	0.275	0.134	-0.142	CGCTG	0.259	0.149	-0.110	
7	TGGCG	0.275	0.135	-0.141	CCAGC	0.289	0.152	-0.137	TGGCG	0.275	0.174	-0.101	
8	CCAGC	0.289	0.151	-0.138	GCCAG	0.280	0.148	-0.131	AAAAT	0.195	0.094	-0.101	
9	TTTTT	0.251	0.114	-0.137	CAGCA	0.261	0.131	-0.130	CCAGC	0.289	0.190	-0.098	
10	CGCCG	0.219	0.103	-0.116	GCTGG	0.279	0.149	-0.130	CTGGC	0.278	0.183	-0.095	

Over-represented 5-mers

	Template				Complement							
Rank	kmer	Ref $\%$	Read $\%$	Diff $\%$	kmer	Ref $\%$	Read $\%$	Diff $\%$	kmer	Ref $\%$	Read $\%$	Diff $\%$
1	TCGTA	0.053	0.140	0.087	ACCCC	0.040	0.148	0.107	TCTAG	0.003	0.064	0.061
2	TCGTC	0.094	0.180	0.086	CCCCG	0.055	0.137	0.082	CTAGA	0.003	0.063	0.060
3	TTCGT	0.090	0.171	0.081	TAGGA	0.012	0.093	0.081	TCTAA	0.025	0.083	0.058
4	CGGGC	0.116	0.195	0.079	CCCCA	0.064	0.141	0.077	CTCGT	0.042	0.100	0.057
5	GTCGT	0.078	0.157	0.079	TACCC	0.073	0.146	0.072	TTAGA	0.026	0.081	0.055
6	CGTCG	0.115	0.193	0.078	CCTAG	0.003	0.074	0.071	CCCAA	0.047	0.101	0.054
7	TCCGT	0.066	0.144	0.078	CTCCC	0.040	0.109	0.069	TAGAT	0.035	0.087	0.052
8	ACCCC	0.040	0.118	0.078	TCCTA	0.013	0.081	0.068	GGGTC	0.040	0.093	0.052
9	TAGGA	0.012	0.089	0.077	TGCTT	0.099	0.166	0.067	CCGTA	0.079	0.130	0.052
10	TCGGG	0.060	0.135	0.075	ACCTA	0.027	0.092	0.065	ATCTA	0.033	0.083	0.050

Escherichia coli GC content

All reference 21mer analysis

All reference substitutions

		Template substituted \%				Complement substituted \%				2D substituted \%			
		a	c	g	t	a	c	g	t	a	c	g	t
®	A	0.00	8.78	8.68	5.28	0.00	9.00	8.58	5.32	0.00	9.17	8.96	4.66
${ }^{\text {cou}}$	C	8.74	0.00	8.84	9.95	9.10	0.00	8.58	9.50	8.61	0.00	9.95	8.76
㐫	G	9.58	8.91	0.00	8.49	9.04	8.82	0.00	8.87	8.75	10.11	0.00	8.31
$\stackrel{\text { ¢ }}{\sim}$	T	5.51	8.70	8.56	0.00	5.58	8.71	8.90	0.00	4.78	8.94	8.99	0.00

Kmer motifs before errors

3-mer error motif analysis

Rank	Template			Complement			2D		
	Insertion	Deletion	Substitution	Insertion	Deletion	Substitution	Insertion	Deletion	Substitution
1	TTC (3.27\%)	TTC (3.31\%)	AAA (4.19\%)	TTC (2.87\%)	AAA (2.87\%)	AAA (4.11\%)	GCA (3.06\%)	AAA (2.76\%)	AAA (3.79\%)
2	AAA (2.84\%)	AAA (3.00\%)	TTC (3.52\%)	AAA (2.79\%)	TGC (2.77\%)	GCA (3.40\%)	AAA (2.92\%)	TGC (2.63\%)	GCA (3.51\%)
3	GCA (2.75\%)	TGC (2.92\%)	GCA (3.25\%)	GCA (2.72\%)	GCA (2.74\%)	GAA (3.23\%)	TTC (2.80\%)	GCA (2.63\%)	GAA (3.08\%)
4	TGC (2.66\%)	GCA (2.81\%)	GAA (2.99\%)	TGC (2.71\%)	TTC (2.67\%)	TTC (3.10\%)	GAA (2.48\%)	GGC (2.48\%)	TTC (2.90\%)
5	ATC (2.54\%)	TCA (2.46\%)	TTT (2.65\%)	GAA (2.42\%)	GGC (2.66\%)	TTT (2.63\%)	TCA (2.47\%)	TTC (2.46\%)	TTT (2.67\%)
6	TCA (2.39\%)	GCC (2.36\%)	TGC (2.62\%)	CAG (2.34\%)	GAA (2.51\%)	TGC (2.45\%)	TGC (2.41\%)	GCG (2.44\%)	GTT (2.58\%)
7	TTT (2.26\%)	GAA (2.35\%)	AAT (2.57\%)	TCA (2.29\%)	GCC (2.32\%)	AAT (2.30\%)	AAT (2.34\%)	TCA (2.42\%)	AAT (2.58\%)
8	GAA (2.22\%)	ATC (2.31\%)	TCA (2.29\%)	ATC (2.25\%)	TCA (2.30\%)	TCA (2.27\%)	ATC (2.28\%)	GAA (2.34\%)	GCC (2.26\%)
9	GCC (2.18\%)	AAT (2.31\%)	ATC (2.27\%)	GGC (2.24\%)	AAT (2.25\%)	ATC (2.22\%)	GCG (2.28\%)	CAG (2.25\%)	TGC (2.24\%)
10	AAT (2.18\%)	GGC (2.19\%)	GCC (2.15\%)	TTT (2.22\%)	CAG (2.24\%)	GCC (2.20\%)	TTT (2.14\%)	GCC (2.18\%)	GCG (2.19\%)
	$\begin{aligned} & \mathrm{T}^{T} \mathrm{C} C \\ & A{ }^{2} \end{aligned}$	TTC AAA A.	$\begin{aligned} & \text { TTE } \\ & \text { AAA } \end{aligned}$	$\begin{aligned} & \mathrm{T}^{\top} \mathbb{C} \\ & \AA \AA\{ \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{T}}^{T T} \\ & \AA A \end{aligned}$	$\begin{aligned} & \hline \text { TTT } \\ & \text { AAA } \end{aligned}$	$\begin{aligned} & \hline \mathrm{TT}^{\mathrm{T}} \\ & \mathrm{CA} \end{aligned}$	$\begin{aligned} & \mathrm{T}^{\mathrm{T}} C \\ & \subset \\ & \triangle A A \end{aligned}$	$\begin{aligned} & \hline \text { TTT } \\ & \text { CC } \\ & \text { AAA } \\ & \hline \end{aligned}$
-10	AGT (0.98\%)	CCT (0.93\%)	AGA (0.90\%)	AGT (0.99\%)	AGT (0.94\%)	CTT (0.93\%)	CTT (1.06\%)	AGT (1.03\%)	AGG (0.94\%)
-9	CTC (0.94\%)	AGG (0.92\%)	ACT (0.88\%)	AGA (0.98\%)	AGG (0.94\%)	CTC (0.91\%)	CTC (0.98\%)	CCC (0.95\%)	ACT (0.92\%)
-8	AGA (0.85\%)	CTT (0.89\%)	GGT (0.88\%)	CTC (0.88\%)	ACT (0.92\%)	CCT (0.88\%)	GAG (0.86\%)	CGA (0.94\%)	CCC (0.89\%)
-7	CCC (0.84\%)	GGG (0.86\%)	AGG (0.87\%)	GGA (0.87\%)	GGA (0.91\%)	AGT (0.87\%)	AGA (0.85\%)	ACT (0.91\%)	CGA (0.85\%)
-6	GGA (0.83\%)	GAG (0.85\%)	CTT (0.84\%)	CCC (0.82\%)	CCT (0.91\%)	ACT (0.80\%)	GGA (0.85\%)	CTT (0.88\%)	CTT (0.83\%)
-5	GAG (0.80\%)	CGA (0.84\%)	AGT (0.84\%)	GAG (0.82\%)	CTC (0.90\%)	AGG (0.80\%)	AGG (0.77\%)	CCT (0.86\%)	GAG (0.80\%)
-4	AGG (0.76\%)	AGA (0.76\%)	GGG (0.83\%)	AGG (0.73\%)	GAG (0.87\%)	GGG (0.77\%)	CCC (0.76\%)	AGA (0.85\%)	GGA (0.71\%)
-3	GGG (0.69\%)	GGA (0.72\%)	GAG (0.69\%)	GGG (0.63\%)	GGG (0.79\%)	GAG (0.66\%)	GGG (0.73\%)	GGA (0.76\%)	AGA (0.68\%)
-2	CTA (0.50\%)	TAG (0.51\%)	TAG (0.39\%)	CTA (0.53\%)	TAG (0.55\%)	CTA (0.41\%)	CTA (0.56\%)	CTA (0.67\%)	TAG (0.50\%)
-1	TAG (0.43\%)	CTA (0.48\%)	CTA (0.36\%)	TAG (0.45\%)	CTA (0.50\%)	TAG (0.40\%)	TAG (0.48\%)	TAG (0.63\%)	CTA (0.41\%)
	$\begin{aligned} & C^{T T} \\ & C^{\prime} \AA \AA \end{aligned}$	$\begin{aligned} & C^{T T} \\ & C_{A} \end{aligned}$	$\begin{aligned} & \bar{C}^{\top} T \\ & \AA_{\AA}{ }^{2} \end{aligned}$	$\begin{aligned} & C^{T T} \\ & C_{\AA}{ }_{A} \bar{A} \end{aligned}$	$\begin{aligned} & \hline \mathrm{CT} \\ & C_{A} C_{\AA} \AA \end{aligned}$	$\begin{aligned} & C^{\top T} T \\ & A_{C} C_{C} \end{aligned}$	$\begin{aligned} & \mathrm{C}^{\mathrm{T}} \\ & \mathrm{~A}_{\AA} \mathrm{A} \end{aligned}$	$\begin{aligned} & \bar{C}^{T} T \\ & A^{\prime} C^{\Sigma} \end{aligned}$	$\begin{aligned} & \overline{C l}^{T T} \\ & \AA C_{\AA} \end{aligned}$

Kmer space for 3-mers: 64 Random chance for any given 3-mer: 1.56\%

4-mer error motif analysis

Rank	Template			Complement			2D		
	Insertion	Deletion	Substitution	Insertion	Deletion	Substitution	Insertion	Deletion	Substitution
1	TTTC (1.04\%)	TTTC (1.07\%)	AAAA (1.42\%)	CAGC (0.88\%)	CAGC (0.96\%)	AAAA (1.16\%)	GAAA (0.84\%)	TGGC (0.90\%)	GAAA (1.05\%)
2	AAAA (0.90\%)	TTCA (0.97\%)	TTTC (1.21\%)	ATCA (0.85\%)	CGGC (0.94\%)	CAAA (1.10\%)	GGCA (0.84\%)	CAGC (0.87\%)	GGCA (1.04\%)
3	GAAA (0.89\%)	AAAA (0.94\%)	GAAA (1.14\%)	CAAA (0.81\%)	TGGC (0.93\%)	GAAA (1.00\%)	CAAA (0.82\%)	TTCA (0.84\%)	AAAA (1.04\%)
4	TTCA (0.86\%)	TTGC (0.91\%)	TTTT (0.96\%)	CTGC (0.80\%)	TTGC (0.86\%)	TTTC (0.94\%)	ATCA (0.82\%)	CAAA (0.78\%)	CGTT (0.91\%)
5	ATCA (0.84\%)	TGCC (0.90\%)	CAAA (0.95\%)	TTGC (0.79\%)	CTGC (0.85\%)	TGAA (0.92\%)	AACA (0.81\%)	CTGC (0.77\%)	CAAA (0.91\%)
6	TTGC (0.81\%)	TTCC (0.89\%)	AAAT (0.88\%)	TGGC (0.77\%)	CAAA (0.84\%)	AGCA (0.88\%)	TTCA (0.80\%)	ATCA (0.75\%)	GGAA (0.90\%)
7	AACG (0.80\%)	GAAA (0.87\%)	TTCA (0.87\%)	CGGC (0.77\%)	TGCC (0.83\%)	GGCA (0.87\%)	GCCA (0.76\%)	CGGC (0.75\%)	TTTC (0.89\%)
8	TTTT (0.80\%)	CAGC (0.83\%)	GCAA (0.86\%)	AAAA (0.77\%)	ATCA (0.80\%)	ATCA (0.86\%)	TGCA (0.76\%)	CGCC (0.74\%)	TGCA (0.88\%)
9	GTTC (0.79\%)	AACG (0.82\%)	GGCA (0.86\%)	TTTC (0.77\%)	TTCC (0.80\%)	TAAA (0.83\%)	TTTC (0.76\%)	GAAA (0.73\%)	TGAA (0.84\%)
10	TGCC (0.78\%)	CTGC (0.81\%)	TGAA (0.85\%)	TGCC (0.74\%)	TTCA (0.79\%)	GGAA (0.83\%)	CAGC (0.74\%)	TGCC (0.73\%)	CGCC (0.83\%)
	$\mathrm{T}^{1} \mathrm{~T}^{\top}{ }^{\top}$	$\operatorname{TT}_{\text {CAAA }}^{\top} C$	$\begin{aligned} & \text { TTET } \\ & \text { ¿ÃA } \end{aligned}$	$\mathrm{CT}^{+}{ }_{C}^{\top}$	$\mathrm{CT}_{A} C_{A}$	$\begin{aligned} & \mathrm{T}^{\top} \mathcal{C} \\ & \text { ÁA } \end{aligned}$	$\begin{aligned} & \mathrm{TT}^{\top} \mathrm{C} \\ & \text { CÃ }^{2} A \end{aligned}$	$\mathrm{C}_{A}^{\mathrm{TT}} C_{A A}$	$\begin{aligned} & T^{\top} C^{C} \\ & C^{\prime} A A \end{aligned}$
-10	AGGG (0.12\%)	TCTA (0.12\%)	CCCT (0.11\%)	AGGG (0.12\%)	ACCT (0.12\%)	TAGA (0.11\%)	GGAC (0.13\%)	ACTT (0.15\%)	CTAA (0.12\%)
-9	CTAA (0.12\%)	TAGT (0.12\%)	CGAG (0.10\%)	TTAG (0.12\%)	TAGT (0.12\%)	ACTA (0.11\%)	AGGG (0.13\%)	ACCT (0.15\%)	CGGA (0.12\%)
-8	TAGT (0.12\%)	CCCT (0.12\%)	ACTA (0.10\%)	CTAA (0.11\%)	GGAC (0.12\%)	TTAG (0.10\%)	CTAT (0.13\%)	CCCC (0.14\%)	CCCT (0.11\%)
-7	TTAG (0.12\%)	CGGA (0.12\%)	TAGT (0.10\%)	GAGG (0.11\%)	ACTA (0.11\%)	TCTA (0.10\%)	CCCC (0.13\%)	CTAT (0.14\%)	ACTA (0.11\%)
-6	TCTA (0.11\%)	GGAC (0.11\%)	TAGA (0.08\%)	CCCT (0.11\%)	CTAA (0.11\%)	CGAG (0.10\%)	TCTA (0.13\%)	CTAA (0.13\%)	CTAT (0.11\%)
-5	GGAC (0.08\%)	CTAA (0.11\%)	TCTA (0.08\%)	GGAC (0.09\%)	TAGA (0.10\%)	GGAC (0.09\%)	CTAA (0.12\%)	CCCT (0.12\%)	TCTA (0.10\%)
-4	TAGA (0.07\%)	TAGG (0.08\%)	TAGG (0.07\%)	TAGA (0.08\%)	CCCT (0.08\%)	CCCT (0.08\%)	TAGA (0.09\%)	TAGG (0.10\%)	TAGG (0.07\%)
-3	CCTA (0.07\%)	TAGA (0.06\%)	GGAC (0.07\%)	TAGG (0.06\%)	TAGG (0.07\%)	TAGG (0.06\%)	CCTA (0.07\%)	CCTA (0.09\%)	TAGA (0.06\%)
-2	TAGG (0.06\%)	CCTA (0.06\%)	CCTA (0.04\%)	CCTA (0.06\%)	CCTA (0.06\%)	CCTA (0.05\%)	TAGG (0.06\%)	TAGA (0.09\%)	CCTA (0.05\%)
-1	CTAG (0.01\%)	CTAG (0.02\%)	CTAG (0.02\%)	CTAG (0.01\%)					
	$\begin{aligned} & \mathrm{T}^{\mathrm{TT}} \\ & \mathrm{C}^{\mathrm{A} A} \overline{1} \end{aligned}$	$\begin{aligned} & \mathrm{T}^{T T T} \\ & \mathrm{C}^{C}{ }^{2} \AA \end{aligned}$	$\begin{aligned} & \text { TCTT } \\ & C_{A}^{T} \AA \AA \overline{1} \end{aligned}$		$\begin{aligned} & T^{T} C^{T} \\ & C^{C} C^{\AA} \end{aligned}$	$\begin{aligned} & \mathrm{T}^{T} \mathrm{~T}^{T} \\ & \mathrm{CA}_{2} \end{aligned}$	$\begin{aligned} & \text { TTTT } \\ & \text { CCA }^{-C} \end{aligned}$	$\begin{aligned} & C_{A \in A}^{\top} C^{\top} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { TTTT } \\ & \text { CC }{ }^{\prime} A \end{aligned}$

Kmer space for 4-mers: 256 Random chance for any given 4-mer: 0.39\%

5-mer error motif analysis

| | | Template | | 2D | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rank | Insertion | Deletion | Substitution | Insertion | Complement
 Deletion | Substitution | Insertion |

[^0]
[^0]: Kmer space for 5-mers: 1024

