NanoOK comparison report

Read lengths

Complement 4000 Number of reads 3000 JEA. 122 JC5C-18.2 JCSC. P2 csH,^{1D,2} JEA 101 WICHG 182 CSH. 10.2 CSH.^{ID} JC5C-18-UCSC 101 JEANA UEA.102 CHG 1a1 CHG 10 2 Sample

Sar

Total bases

Alignment summary

Number of reads

Control sequence identity

Control sequence best perfect kmer

Control sequence GC

Control sequence Complement Over-represented 5-mers

Sample	1	2	3	4	5	6	7	8	9	10
CSH_1a_1	CTTTG	ACCCC	TACTT	TATAC	GGAAT	GAGGA	GCCGA	CCCCA	TCAGC	ATACT
CSH_1a_2	ACCCC	GCCGA	CCCCA	GAGGA	TACTT	CTTTG	TATAC	CTTAC	TGCTT	TGCGA
UCSC_1a_1	ACCCC	CCCCA	GAGGA	TCAGC	CTTTG	TACTT	GCCGA	ATCTA	CATCT	TACAT
UCSC_1a_2	ACCCC	CTTTG	TACTT	TCAGC	CCCCA	TATAC	CTTAC	GAGGA	GCCGA	TGCTT
UEA_1a_1	GTACA	GTACT	ACCGG	ACAAG	ACACC	TTATA	GTAGG	GTGGG	GCTTG	GCGAG
UEA_1a_2	CATCT	CGAAA	TACTA	AAGCT	ACTAA	TGCTT	TGCGG	CCAGT	CCCCA	GTGTG
WTCHG_1a_1	GAGGA	ACCCC	CCCCA	TACTT	CTTTG	GCCGA	TATAC	TCAGC	CTTAC	TGCTT
WTCHG_1a_2	ACCCC	CCCCA	GAGGA	ACTCT	GTATC	GAGAG	TCTAC	TACCC	GCCGA	CGAGA
ZF-screens_1a_1	CTTTG	TACTT	GAGGA	TGCTT	ACCCC	GGAAT	CTTAC	TCAGC	GCCGA	TATAC
ZF_screens_1a_2	CTTTG	TACTT	GAGGA	GGAAT	TGCTT	ACCCC	GCCGA	TCAGC	CTTAC	CCCCA
CSH_1b_1	CTTTG	TACTT	TACAT	CTTAC	GGAAT	GGCTT	TGCGA	TGCTT	ACCCC	GAGGA
CSH_1b_2	GAAAC	TGCTT	GCCGT	TTCGG	CTTTG	GCCTT	GAGCG	ACATA	CATAC	CGGCG
UCSC_1b_1	CTTTG	GGAAT	TACTT	GAGGA	TGCTT	GGCTT	ACCCC	CGGCT	CTTAC	GATTC
UCSC_1b_2	GGAAT	CTTTG	TGCTT	GGCTT	TACTT	GAGGA	TATAC	TGCGA	GCCGA	ACCCC
UEA_1b_1	GAGGA	TACTT	ACCCC	CCCCA	CTTTG	CTTAC	ACTCT	GCCGA	ATACT	TATAC
UEA_1b_2	ACCCC	GAGGA	CCCCA	TACTT	CTTTG	GCCGA	TCTAC	TATAC	TGCTT	TCAGC
WTCHG_1b_1	CTTTG	ACCCC	TACTT	GAGGA	TGCTT	GCCGA	CCCCA	CTTAC	GGAAT	TACAT
WTCHG_1b_2	CTTTG	TACTT	GGAAT	GAGGA	TACAT	ACCCC	GCCGA	CTTAC	TGCTT	TATAC
ZFscreens_1b_1	CCCCA	ACCCC	GAGGA	TACTT	CTTTG	ACTCT	GCCGA	TGCTT	CTTAC	TCAGC
ZFscreens_1b_2	CTTTG	GGAAT	TACTT	GAGGA	ACCCC	TGCTT	GGCTT	CTTAC	TATAC	ATCTA

Control sequence Complement Under-represented 5-mers

Sample	1	2	3	4	5	6	7	8	9	10
CSH_1a_1	TTTTT	AAAAA	AAAAC	TGATG	GATGT	GCAAT	AGAAA	CTGAT	AACAA	AATAT
CSH_1a_2	TTTTT	AAAAA	AAAAC	TGATG	GATGT	GCAAT	AACAA	TAATA	AGAAA	TTATC
UCSC_1a_1	TTTTT	AAAAA	TGATG	AAAAC	GATGT	GCAAT	CTGAT	AATAT	TTATC	TAATA
UCSC_1a_2	TTTTT	AAAAA	TGATG	AAAAC	GATGT	GCAAT	TTATC	AACAA	CTGAT	AATAT
UEA_1a_1	TTTTT	AAAAA	TGATG	AAAAC	AATAT	CTGAT	TGATT	GATGT	ATTAT	GCAAT
UEA_1a_2	TTTTT	AAAAA	GTTTT	AGTAA	AACAA	GCGTG	GCAAT	GTCAG	TTTCT	TGAAG
WTCHG_1a_1	TTTTT	AAAAA	AAAAC	TGATG	GATGT	GCAAT	AACAA	TTATC	AATAT	AGAAA
WTCHG_1a_2	TTTTT	AAAAA	TGATG	GATGT	AAAAC	GCAAT	AGTAA	TGAAG	TAATA	CTGAT
ZF-screens_1a_1	TTTTT	AAAAA	AAAAC	TGATG	GATGT	GCAAT	TTATC	AACAA	AATAT	AGAAA
ZF_screens_1a_2	TTTTT	AAAAA	AAAAC	TGATG	GATGT	GCAAT	TTATC	AGAAA	AACAA	AATAT
CSH_1b_1	TTTTT	AAAAA	AAAAC	GATGT	TGATG	GCAAT	AATAT	TTATC	AACAA	TGAAG
CSH_1b_2	TTTTT	AAAAA	TGATG	GATGT	TTATC	AAAAC	GCTGA	CTGAT	GAGCA	AATAT
UCSC_1b_1	TTTTT	AAAAA	AAAAC	GATGT	TGATG	GCAAT	AACAA	TTATC	AGAAA	CAAAA
UCSC_1b_2	TTTTT	AAAAA	AAAAC	GATGT	AACAA	AGAAA	TTATC	GCAAT	TGATG	AATAT
UEA_1b_1	TTTTT	AAAAA	AAAAC	TGATG	GATGT	GCAAT	TGAAG	AGTAA	AATAT	AACAA
UEA_1b_2	TTTTT	AAAAA	AAAAC	TGATG	GATGT	GCAAT	AACAA	TTATC	CTGAT	AATAT
WTCHG_1b_1	TTTTT	AAAAA	AAAAC	TGATG	GATGT	GCAAT	AATAT	TTATC	AACAA	AGAAA
WTCHG_1b_2	ТТТТТ	AAAAA	AAAAC	TGATG	GATGT	GCAAT	TTATC	AATAT	AACAA	AGAAA
ZFscreens_1b_1	ТТТТТ	AAAAA	AAAAC	TGATG	GATGT	GCAAT	AATAT	TAATA	CTGAT	AGTAA
ZFscreens_1b_2	ТТТТТ	AAAAA	AAAAC	GATGT	TGATG	TTATC	GCAAT	AATAT	AGAAA	AACAA

Escherichia coli identity

Escherichia coli best perfect kmer

Escherichia coli GC

Escherichia coli Complement Over-represented 5-mers

Sample	1	2	3	4	5	6	7	8	9	10
CSH_1a_1	ACCCC	TAGGA	GAGGC	GGAAT	GAATT	TGCTT	CCTAG	ТССТА	CCCCG	TACCC
CSH_1a_2	ACCCC	CCCCG	CCCCA	TACCC	TAGGA	ТССТА	CCTAG	тсссс	CTAGC	CTCCC
UCSC_1a_1	ACCCC	CCCCG	TAGGA	CCCCA	TACCC	CCTAG	СТССС	ТССТА	TGCTT	CTAGC
UCSC_1a_2	ACCCC	TAGGA	TGCTT	CCTAG	ТССТА	GGAAT	CCTAT	CCCCG	ACCTA	CTAGG
UEA_1a_1	ACCCC	TAGGA	TGCTT	GGAAT	GAACC	GAATT	ТССТА	GAGGC	CCTAG	CCCCG
UEA_1a_2	ACCCC	TAGGA	CCCCG	TGCTT	GAGGC	ТССТА	TACCC	CCTAG	GAACC	CCCCA
WTCHG_1a_1	CGAGC	ACCCC	GCGAG	GAGCG	TACCC	CCCCG	TAGGA	CCCCA	GAGGC	СТССС
WTCHG_1a_2	GAGAG	ACCCC	AGAGA	CCCCG	CCCCA	TACCC	СТСТС	СТССС	TATCT	CCCCC
ZF-screens_1a_1	CGAGC	ACCCC	TAGGA	GCGAG	TGCTT	GAGCG	ТССТА	TCCTT	TACCC	CCTAG
ZF_screens_1a_2	ACCCC	TAGGA	GGAAT	TGCTT	ТССТА	GAGGC	TACCC	CCTAG	CCTAT	ATCTA
CSH_1b_1	ACCCC	TAGGA	CCTAG	ТССТА	TACCC	CCTAT	ATTTA	TACCT	TGCTT	GGAAT
CSH_1b_2	ACCCC	CCCCG	CCCCA	TACCC	тсссс	СТССС	TAGGA	GAGAG	CTAGC	CCTAG
UCSC_1b_1	ACCCC	TAGGA	TGCTT	CCCCG	GGAAT	CCTAG	TACCC	TTGGA	ТССТА	CCCCA
UCSC_1b_2	TAGGA	ACCCC	GGAAT	ТССТА	TGCTT	CCTAG	GAACC	ATTTA	CCTAT	TACCT
UEA_1b_1	ACCCC	CCCCA	CCCCG	TAGGA	СТССС	CTAGC	TACCC	тсссс	CTAAT	TACCT
UEA_1b_2	ACCCC	CCCCG	TAGGA	CCCCA	TACCC	CCTAG	TGCTT	ТССТА	СТССС	ACCTA
WTCHG_1b_1	ACCCC	TAGGA	CCCCG	TACCC	CCCCA	TGCTT	GAACC	TACCT	CCTAG	ATTTA
WTCHG_1b_2	ACCCC	TAGGA	TGCTT	GGAAT	ATTTA	GAACC	CCTAG	ATTTG	TACCC	TACCT
ZFscreens_1b_1	ACCCC	CCCCA	TACCC	CCCCG	TACCT	ССССТ	TAGGA	CCTAT	CCCTA	ACCTA
ZFscreens_1b_2	TAGGA	ACCCC	GGAAT	TGCTT	ATTTA	CCTAG	ТССТА	ATTTG	TTGGA	CCTAT

Escherichia coli Complement Under-represented 5-mers

	-	•	•		_	-			•	10
Sample	1	2	3	4	5	6	7	8	9	10
CSH_1a_1	AAAAA	CGCCA	TTTTT	CGCTG	CTGGC	CCAGC	GCCAG	CAGCA	CGCGC	TGGCG
CSH_1a_2	CGCCA	AAAAA	TTTTT	CTGGC	CGCTG	TGGCG	CCAGC	CAGCA	CACCA	GCTGG
UCSC_1a_1	CGCCA	AAAAA	TTTTT	CGCTG	CTGGC	TGGCG	CCAGC	GCCAG	GCTGG	CAGCA
UCSC_1a_2	AAAAA	CGCCA	TTTTT	CGCTG	CTGGC	CCAGC	TGGCG	GCCAG	CGCGC	CAGCA
UEA_1a_1	AAAAA	CGCCA	TTTTT	CTGGC	CGCTG	CCAGC	GCCAG	TGGCG	CAGCA	CGCGC
UEA_1a_2	CGCCA	AAAAA	TTTTT	CGCTG	CTGGC	CCAGC	GCCAG	TGGCG	CAGCA	CGCGC
WTCHG_1a_1	CGCCA	AAAAA	TTTTT	CGCTG	CTGGC	CCAGC	GCCAG	TGGCG	GCTGG	TGCGC
WTCHG_1a_2	CGCCA	AAAAA	CGCTG	CTGGC	TGGCG	GCTGG	TTTTT	CCAGC	GCCAG	CAGCA
ZF-screens_1a_1	AAAAA	CGCCA	TTTTT	CGCTG	CTGGC	TGGCG	CGCGC	GCCAG	CCAGC	GCGCA
ZF_screens_1a_2	AAAAA	CGCCA	TTTTT	CTGGC	CGCTG	TGGCG	CGCGC	CCAGC	GCCAG	GCGCA
CSH_1b_1	AAAAA	CGCCA	TTTTT	CTGGC	TGGCG	CGCTG	CGCGC	CCAGC	GCGCA	CAGCA
CSH_1b_2	CGCCA	AAAAA	CGCTG	CTGGC	TTTTT	TGGCG	CCAGC	CAGCA	GCTGG	GCCAG
UCSC_1b_1	AAAAA	CGCCA	TTTTT	CTGGC	CGCTG	CCAGC	TGGCG	GCCAG	CAGCA	CGCGC
UCSC_1b_2	AAAAA	CGCCA	TTTTT	CTGGC	CCAGC	CGCGC	TGGCG	CGCTG	CAGCA	GCGCA
UEA_1b_1	CGCCA	AAAAA	TTTTT	CGCTG	TGGCG	CTGGC	CCAGC	CAGCA	GCCAG	CAGCG
UEA_1b_2	CGCCA	AAAAA	TTTTT	CGCTG	CTGGC	CCAGC	TGGCG	GCCAG	CAGCA	GCTGG
WTCHG_1b_1	AAAAA	CGCCA	TTTTT	CTGGC	TGGCG	CGCTG	CCAGC	CAGCA	GCCAG	CGCGC
WTCHG_1b_2	AAAAA	CGCCA	TTTTT	CTGGC	CCAGC	CGCTG	TGGCG	CGCGC	CAGCA	GCCAG
ZFscreens_1b_1	ТТТТТ	CGCCA	AAAAA	CGCTG	TGGCG	CTGGC	CACCA	CCAGC	GCTGG	TGCGC
ZFscreens_1b_2	AAAAA	CGCCA	TTTTT	CTGGC	CCAGC	CGCTG	CGCGC	GCCAG	TGGCG	CAGCA